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ABSTRACT 
LES of industrial flows is associated with 
geometrical complexity and requires high order 
schemes to minimize dissipation and dispersion. 
To tackle these two issues it is necessary to use 
unstructured grids and High Performance 
Computing algorithms. In this context, CERFACS 
initiated two years ago the development of a new 
CFD code called JAGUAR based on a 
mathematical framework leading to high-level 
capability for LES. In this paper, many topics for 
HPC are introduced and solved in order to obtain 
the best code performance. 
 

1. INTRODUCTION 

Some problems encountered by industry cannot be 
addressed easily by standard approaches based 
on (Unsteady) Reynolds Averaged Navier-Stokes 
(URANS) modelling. These problems generally 
encountered at off-design operating point require 
to account accurately for turbulence effects. For 
such configurations, the switch to a Large Eddy 
Simulation (LES) and sisters (DES, Wall Modelled 

LES) is nowadays recognized as a viable 
alternative.  
 
Industrial geometry is by nature complex and in 
general, geometry cleaning is mandatory to 
perform URANS simulations at a reasonable cost. 
Here, the key point is to be able to deal with any 
geometry of high complexity, with a reduced effort 
on the CAD cleaning. It is therefore mandatory to 
consider an unstructured framework in order to 
build a mesh automatically for any kind of 
configuration.  
 
LES modelling has shown recently its great power 
for off-design configurations due to the increase in 
computational power (supercomputers) over the 
last decades. In fact, it is well known that LES is 
generally based on explicit time integration and 
needs very refined meshes. High Performance 
Computing (HPC) is therefore the bottleneck in 
order to reduce both the restitution time and the 
size of the mesh that a computational core has to 
account for.  
 



 

In our opinion, the last key point for a LES solver 
concerns the choice of numerical schemes. Even if 
LES can be performed with a standard second-
order scheme, the number of degrees of freedom 
can become intractable. For the sake of clarity, a 
spectral analysis following the von Neumann 
approach shows that a second order scheme 
requires 32 more mesh nodes than a six-order 
scheme for a comparable dissipation / dispersion 
behaviour. In our opinion, a high order scheme is 
desirable to minimize the mesh size. 
 
Finally, a good LES solver has to account for 
complex geometry with an unstructured grid 
paradigm and it must deal with high parallel 
performance in order to reduce the restitution time 
or to solve the problem by splitting the mesh.  
 
In this paper, we present a new LES solver called 
JAGUAR. JAGUAR has been designed to solve 
all these issues linked with LES. In JAGUAR, 
Navier-Stokes equations are solved following a 
Spectral Difference (SD) approach. The SD 
method is a member of spectral discontinuous 
techniques and the key points are a polynomial 
reconstruction of variables inside any mesh 
element and a Riemann solver to take into account 
explicitly discontinuity at mesh interface. Another 
point of importance concerns the HPC capability: 
the SD method needs a local stencil, avoiding the 
reconstruction of large stencils using cell-
neighbouring algorithms. As any discontinuous 
spectral approach, the SD algorithm induces many 
computations on the local stencil. Moreover, the 
parallel data exchange is quite limited. 
 
In section 1, the basic aspects of the SD method 
are introduced. The following sections are 
dedicated the analysis of the performance of 
several parallelism paradigms: single CPU, single 
GPGPU, MPI parallelism, GPGPU parallelism 
using MPI and hybrid OpenMP/MPI approaches. 
Section 8 presents the conclusion of our efforts. 
 
2. THE SPECTRAL DIFFERENCE (SD) 

METHOD 

Kopriva introduced the SD method in 1998 [1] for 
structured grids and Liu et al. extended it to 
unstructured grids in 2006 [2]. The principle of the 
SD is to solve Euler or Navier-Stokes equations in 
their strong form, avoiding any integral formalism. 
This point justifies the naming of spectral 
difference: spectral is linked to polynomial shape 
functions and difference refers to the finite 
difference approach. For the sake of clarity, 
explanations regarding the SD method are 
dedicated to Euler equations in 1D but the 

approach is easily extended 2D or 3D flows [3] and 
to viscous terms using a pure centred formulation 
[4]. 
 
The principle of the SD approach is to assume that 
the vector of unknowns Q varies as a polynomial 
with a predefined degree inside each segment. In 
the following and in order to simplify explanations, 
we assume that the number of unknowns Q is p+1: 
p+1 solution points are defined inside the segment, 
where the solution is known. From those p+1 
values, a p-th order interpolation polynomial is built 
to represent quantity variations inside each mesh 
segment. Now, let us introduce a pure hyperbolic 
equation with F the flux function which is 
considered here as a nonlinear function depending 
on Q.  
 
As for a Finite Difference approach, solutions are 
computed in all i solution points: 
 
                      !!!

!"
+ (!"(!)

!"
)! = 0                       (1) 

 
Following an explicit time marching process, the 
solution evolution is known once the derivative of 
the flux density F(Q) is computed at each solution 
point. For consistence, the flux density must be a 
polynomial of degree p+1, based on p+2 values 
computed at some specific locations called flux 
points: its derivative is therefore a p-th order 
polynomial. Two kinds of flux points are 
introduced. Any intern flux point is located between 
two adjacent solution points. The last two flux 
points are segment ends. The approach is 
therefore staggered. The flux at intern flux points is 
build from nonlinear relations using the 
extrapolated solution in the flux point. For the two 
end points, two solutions are extrapolated and the 
flux is computed using a (approximated) Riemann 
solver. Finally, the flux polynomial is recovered by 
interpolation from the flux at flux points and it is 
differentiated in the solution points. The different 
algorithm steps are summarized in Figs. 1-6. 
 

 
 
Figure 1: Step 0: Solution points, second order 
polynomial and solution on the segment. 



 

 

 
Figure 2: Step 1: Extrapolation of the quantities at 
flux points. 

 
 
Figure 3: Step 2: computation of the flux from the 
solution at flux points. Without treatment, two 
different fluxes are found at segment end points. 
 

 
Figure 4: Step 3: unique flux computation at 
segment end points with a Riemann solver 
 

 
Figure 5: Step 4: New flux polynomial from flux 
points (at degree p + 1). 
 

 
Figure 6: Step 5: differentiation of the flux 
polynomial at solution points. 
 
The solution and flux polynomials are Lagrange 
polynomials and the solution points are the 
following Gauss points on [0,1], as in many papers 
published in the literature: 
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K. Van Den Abeele [5] shows that the definition of 
the solution point has no effect on both accuracy 
and stability. The flux point position (defined by 
index s+1/2 for a flux point located between 
solution point s and s+1) has a strong importance 
on the numerical stability. In the first papers, the 
flux points were the Gauss-Lobatto points on [0,1]: 
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but the scheme is then unstable for an order larger 
than 2 [5]. In our implementation, we consider the 
Legendre roots and end points as flux points, for 
which the SD method is stable [5,6].  
 
The extension to 2D and 3D flows follows a tensor 
product framework and the SD method can be 
applied to any unstructured grid composed of 
hexahedra.  
 
Finally, for memory optimization, the location of 
unknown is not stored in the physical domain: an 
isoparametric transformation converts any cell 
from the physical domain into a regular square 
element (Fig. 7). Equations are then solved in the 
isoparametric element and solution is transferred 
back to the physical domain only when it is 
mandatory.  
 



 

 
Figure 7: Isoparametric transformation to cast a 
mesh cell ABCD into the square A’B’C’D’ 
 
3. FROM THEORY TO ALGORITHM 

Finally, the method can be divided into the 
following steps: 
1. Extrapolation of the solution at the flux points 
using the p-th order polynomial built with solution 
values Q at the solution points, 
2. Computation of the flux in the intern flux points, 
3. Treatment of the discontinuity using a Riemann 
solver to compute the flux on cells faces, 
4. Extrapolation of the flux at the solution points 
using the p+1-th order polynomial interpolation F 
built with computed flux values F at the flux points, 
5. Computation of the divergence of the flux 
polynomial in the solution, 
6. Update of the solution Q at the next time step 
using the flux divergence and a time integration 
algorithm. 
 
It is then clear that two different treatments must 
be performed: one inside the mesh element and 
one dedicated to the flux computation on the mesh 
faces using a Riemann solver. In the following, the 
transfer of extrapolated conservative fields at 
boundary-element flux points into a list of face 
elements is called the scatter operation. These 
data are mandatory for the flux computation by the 
Riemann solver in order to introduce a perfect 
memory alignment. The transfer of the list of fluxes 
from face to cells is called the gather operation. 
 
 
4. SERIAL ALGORITHM OPTIMIZATION 

The measured CPU time spent in each routine 
lead to the following remarks: 

1. The computation of the extrapolated 
solution at flux points and the definition of 
intern flux (by non linear composition on Q) 
takes about 40% of the time per iteration.  

2. The computation of the flux divergence 
from the flux polynomial takes about 25% 
of the time per iteration. 

3. The alignment in memory of conservative 
quantities at end-element flux points 
(scatter or cell-to-face operation) and the 

transfer of the Riemann flux to the cells 
(gather or face-to-cell operation) takes 
10% of the time per iteration. 

4. The nonlinear Riemann solver takes 
approximately 10% of the time per 
iteration. 

 
4.1.  Optimization of extrapolation / divergence 

operations 

By nature, a computer is designed to perform 
matrix / matrix multiplications and compilers are 
optimized to perform linear algebra. Extrapolation 
and derivation were written easily in term of matrix 
/ matrix product and memory arrangement has 
been optimized for vectorization. Moreover, we did 
not consider here the Basic Linear Algebra 
Subprogram (BLAS) library because the matrices 
encountered have a very reduced shape for 
dedicated libraries like BLAS. Finally, we defined 
and implemented our own matrix / matrix product.  
 
Moreover, the matrix / matrix product becomes 
efficient if and only if the memory placement of 
data is optimized. Our initial memory placement 
followed a typical placement for a finite volume 
solver: all conservative variables in a cell are 
located continuously. Such a memory placement is 
not optimal for JAGUAR since extrapolation and 
derivations are performed variable per variable. 
Our optimized memory placement has also been 
considered for flux at flux points.  
 
4.2.  Cache blocking 

JAGUAR has been designed to deal with hp- 
refinements: in the near future, JAGUAR will be 
able to automatically refine the mesh (h- 
refinement) or to increase the polynomial degree 
(p-refinement). A greedy algorithm has been 
implemented in order to factorize common 
treatments and reduce the total amount of 
operations. It consists in making tasks by packing 
contiguous cells with the same polynomial degree 
p. The greedy algorithm also splits the packed 
cells into subtasks. These subtasks fit perfectly 
into the L3 cache of the CPU: it is the well-known 
cache blocking technique.  
 
4.3. GPGPU implementation 

The previous greedy algorithm presents interesting 
features for General-purpose Processing on 
Graphics Processing Units (GPGPU), excluding 
the sub-task creation part. Actually, the greedy 
algorithm leads to a SIMD (Single Instruction 
Multiple Data) paradigm inside a given task. This is 
close to the actual SIMT (Single Instruction 



 

Multiple Threads) paradigm for GPGPU and 
adaptation to SIMT was obvious. 
 
GPU efficiency mainly depends on the thread bloc 
configuration regarding memory access of each 
thread. Here, the goal is to create the right number 
of threads in order to perform coalesced access in 
the global memory. For JAGUAR, there are as 
many GPU threads created as the number of 
solution points is and each GPU bloc is dedicated 
to several cells. JAGUAR uses a fine-grained 
computing approach. 
 
5. MPI OPTIMIZATION 

The MPI library enables parallel computations for 
both the CPU and GPGPU versions of JAGUAR. 
For efficiency, the MPI communications are 
overlapped by computations. Moreover, the 
chosen persistent communications avoid 
redundancy in setting up the message each time it 
is sent.  
 
6. OpenMP IMPLEMENTATION 

A simple but not efficient way to introduce 
OpenMP inside a CFD code consists in creating / 
pooling OpenMP threads in each routine of the 
time loop. Our first multi-threading implementation 
using OpenMP consisted in building a parallel 
zone (thread pooling zone) for any subroutine 
inside the time loop. It is a way to get an OpenMP 
code without many modifications of the original 
and sequential CFD code. Such a solution 
presents some drawbacks: there were many 
unnecessary parallel zone creations and many 
unnecessary implicit thread synchronisations. For 
a small number of threads (< 6), the initial version 
of the code showed relatively good speed-up but 
for a larger number of threads, the scalability of the 
code did not meet our expectations. The 
alternative approach consists in calling the OMP 
threads creation only one time, just before the time 
loop in the code. The subroutines dedicated to MPI 
communications are intrinsically sequential and 
“OpenMP master zones” was used for them. 
Except for these subroutines, the whole solver 
(code inside the time loop) has been entirely 
parallelized.  
 
In JAGUAR, a heterogeneous OMP strategy has 
been considered. It practice, some parts of the 
code are perfectly regular and it is easy to use a 
standard OpenMP for-loop indices distribution. In 
contrary, other parts of the code work on mesh 
cells and the code needs to account for different 
number of degrees of Freedom (directly depending 
on the polynomial approximation used for the 

current cell). As a consequence, it is not possible 
to perform a for-loop indices distribution and in 
these cases, the OMP tasking model is applied. In 
order to reduce the cost of task creation, it is 
mandatory to be able to allocate more than one 
cell to a single task. The number of cells 
associated to one task depends on the size of the 
cell representation in memory. Actually, the size of 
the different types of cells has been pre-computed 
in order to be capable to create cell packs smaller 
than the L3 cache size. This way the code 
performs cache blocking and the number of tasks 
is drastically reduced (by limiting tasks 
management overhead). We also merged some 
subroutines in order to improve data independence 
between threads inside a task. This improvement 
reduces the number of synchronisations and 
increases the cache blocking effect. We also 
deleted some barriers between the subroutines in 
the solver by using the “no wait” clause wherever 
possible.  
 
To summarize, our approach consists in calling the 
OpenMP threads creation only once, just before 
the time loop in the code. The subroutines 
dedicated to MPI communications are intrinsically 
sequential and a serial treatment (“OpenMP 
master zones”) was used for them. Except for 
these subroutines, the whole solver has been 
entirely multi-threaded with OpenMP. In order to 
reduce the cost of task creation, JAGUAR relies 
on a greedy algorithm able to affect many cells to a 
single task. The number of cells associated to one 
task depends on the size of the cell representation 
in memory: the goal is to perform cache blocking. 
The multi-threading implementation in JAGUAR is 
fully described in [14]. 
 
7. RESULTS AND DISCUSSION 

In the following, only the efficiency of Euler 
computations is introduced. We are currently 
extending MPI, OpenMP and CUDA strategy to the 
diffusion term of the Navier-Stokes equations and 
our first (preliminary) results show that the same 
kind of conclusion can be drawn for the Navier-
Stokes version of JAGUAR. Non integer numbers  
are defined as double-precision floating-point 
numbers.  
 
7.1. Serial implementation 

The first analysis concerns the serial efficiency of 
our solver JAGUAR. To do so, we consider a 
Cartesian grid composed of 128x128 mesh 
elements. An isentropic vortex, solution of the 
Euler equations, is convected in a periodic domain. 
This simulation is inspired by the one of the 



 

International Workshop on High Order CFD 
methods [7,8]. Here, JAGUAR V1 will refer to the 
initial version of the CFD code, without a dedicated 
optimization, while JAGUAR V2 is the version with 
all optimizations presented in Secs. 4.1 and 4.2. 
Fig. 8 shows that the CPU performance has been 
highly increased and the restitution time for the 
same simulation has been decreased by 30% for 
p=6 (7th order accurate solution).  
 

 
Figure 8: Computational time (in s) as a function of 
the polynomial degree for both initial and optimized 
versions of JAGUAR. 
 
Moreover, the GigaFlops per second (GFlops) of 
JAGUAR as a function of the polynomial degree of 
the solution are shown in Fig. 9. For both versions 
of the solver, the amount of scalar (referred as 
scalar) and vectorized (referred as vector) 
operations are represented. The GFlops per 
second of the vectorized routines are highly 
increased and for any order of accuracy, JAGUAR 
takes more than 1 GFlops/s. It must be noted that 
the increase in GFlops/s varies between 27% and 
55%. 
 

 
Figure 9: Number of GFlops per second as a 
function of the polynomial degree of the solution 
variables.  
 

These computations have been performed on an 
Intel Xeon E5-2670 CPU that delivers a peak 
power of 83.2 GFlops/s for 8 cores, and therefore 
10.4 GFlops/s for 1 core. JAGUAR can take 
benefit of 15% of the peak power and this results 
makes JAGUAR one of the most efficient CFD 
codes available in CERFACS. 
 
7.2. GPGPU implementation on one GPU 

In this section, the same kind of results as for the 
serial implementation is presented for a 
computation on a 2D 512x512 and a 3D 30x30x30 
mesh elements on one Nvidia Tesla K20c GPU. 
Here, the reference is the optimized version of 
JAGUAR called JAGUAR V2. The mean speed-up 
is about 30 for both meshes and for any value of p 
(Fig. 10). The number of floating operations per 
second is quite low compared to the peak power of 
the GPU (Fig. 11): 1 170 GFlops/s. But this result 
is in agreement with other results from the 
literature [9]. Our experience shows also that the 
GPU performance strongly depends on the 
quantity of work to perform on the GPU: maximum 
efficiency is possible when many operations can 
be performed and therefore when the code is 
compute-bound. Unfortunately JAGUAR is 
memory-bound.  

 
Figure 10: Speed-up obtained on the GPU for 2D 
and 3D meshes as a function of the polynomial 
degree p. 



 

 
Figure 11: GFlops obtained on the GPGPU for 2D 
and 3D meshes as a function of the polynomial 
degree p. 
  
7.3. MPI implementation 

The MPI implantation of JAGUAR has been 
analysed on Airain platform (Bull supercomputer at 
CCRT). The mesh considered is composed of 512 
x 512 2D elements and a strong scaling analysis is 
performed using 16, 32, 64, 128, 256, 512, 1024 
and 2048 cores. An almost linear speed-up has 
been obtained for a polynomial degree from 3 to 6 
(Fig. 12).  
 

 
Figure 12: Speed-up depending on the number of 
computational cores for different order of 
polynomial reconstruction.  
 
The floating-point operations per second have also 
been measured on the same mesh and they are 
summarized in Fig. 13. Two conclusions are 
drawn. First, when the polynomial degree 
increases, the work to perform on each mesh cell 
increases and due to optimizations, the GFlops 
follow the same tendency. Moreover, GFlops 
obtained are almost twice as big as standard CFD 
solvers: the Spectral Difference approach is a 
good candidate to take benefit from the core 
performance. 

  

 
Figure 13: GFlops for several order of accuracy as 
a function of the number of cores. 
 
Moreover, the time per iteration and per degree of 
freedom is represented in Fig. 14. For any order of 
accuracy, an averaged mean time of 2.2 
microseconds per iteration and per degree of 
freedom is measured. It can be deduced that the 
mean time per iteration is lower than the one for 
industrial CFD solvers. Moreover, the higher 
efficiency for 1024 cores seems to be a 
consequence of the lower size of data per core, 
leading to a better memory management (cache 
effect). 
 

 
Figure 14: Mean time (in microsecond per iteration 
and per degree of freedom) depending on the 
polynomial order and on the number of 
computational cores.  
 
Our last result concerns an analysis of parallel 
performance on a less refined mesh. 
Computations are performed on Neptune [11], one 
of CERFACS in-house supercomputers based on 
the same architecture as Airain. Here, a 128x128 
regular mesh is split for parallel computations up to 
1024 cores (Fig. 15). For such a mesh, the linear 
scalability is lost: the time spent in communications 
is large compared to the time spent in 



 

computational loops for this mesh. But JAGUAR 
keeps 80% of efficiency on 1024 cores with only 
400 degrees of freedom per core. For p=4 (fifth-
order accurate solution), it corresponds to 16 cells 
in 2D and 3 cells in 3D. It is much lower than for 
any regular industrial CFD solver and it is also a 
proof that our implementation of the SD approach 
is well optimized for parallel simulations. 
 

 
Figure 15: Speed up analysis depending on the 
number of cores for a small mesh composed of 
16,384 quadrangles. 
 
7.4. GPGPU MPI implementation 

The parallel version of our GPGPU-enabled solver 
follows the same implementation optimizations as 
the regular MPI version. In particular, the code 
accounts for asynchronous communications and 
the CPU associated with the GPU performs MPI 
exchanges. The overall performance is therefore 
lower than for a pure MPI approach since two data 
exchanges must be performed: the first one is 
mandatory to transfer information between the 
GPU and the CPU while the second one is the MPI 
exchange between CPUs. On 64 GPU (Fig. 16), 
the overall efficiency is 47 for a 3D mesh (110 595 
hexahedra) and 49.9 for a 2D mesh (640 000 
hexahedra). Such a result is in full agreement with 
results previously published in the literature 
regarding GPU performance with the same class 
of discontinuous spectral approaches. Moreover, 
let’s remind that 1 GPGPU has the same power as 
4 standard CPU’s or 30 cores. For the considered 
meshes, it means that the configuration is more or 
less the same as on 30 x 64 = 1920 cores.  
 

 
Figure 16: GPU speed-up analysis for both 2D and 
3D meshes.  
 
7.5. OpenMP implementation 

In the near future, supercomputers may be based 
on CPU’s with many cores and a shared memory. 
For exascale computing, it could be of strong 
interest to take benefit of a local parallelism inside 
the computational node and to decrease both size 
and number of MPI messages.  
 
The OpenMP computations are performed on the 
Curie super-computer [10] and we used Curie thin 
nodes. Any node is composed of two sockets and 
each socket contains an Intel Sandy Bridge with 8 
cores (Hyper-threading was disabled). Our new 
full-OpenMP implementation leads to an efficiency 
of 13/16 on the node and a hybrid approach 
considering MPI between sockets and OpenMP 
inside socket leads to a speed-up of 14/16 (Fig. 
17).  

 
Figure 17: performance obtained with full OpenMP 
versus hybrid OpenMP MPI  approaches. 
 
On the same mesh, a full MPI approach performs 
slightly better (15-fold speed-up against 14-fold 
speed-up) as shown in Fig. 18. It is important to 
note that the MPI parallel efficiency is not optimal 
for the considered small grid. 
 



 

 
Figure 18: full MPI versus hybrid MPI / OpenMP 
parallel performance 

 
8. CONCLUSION AND PERSPECTIVES 

Large Eddy Simulation is entering now in industry. 
For this purpose LES implementation needs 
several prerequisite: unstructured grid capability, 
high efficiency on a core, parallel efficiency and 
high order of accuracy. We have presented in this 
paper a new technique to address these 
constraints. The class of discontinuous spectral 
approaches considers a polynomial reconstruction 
of data inside the element and discontinuous 
solution at cell interfaces. Beyond the class of 
discontinuous spectral approaches, we considered 
the spectral difference approach: equations are 
solved in their strong differential form, which 
avoids many complex integral quadrature rules 
encountered in many other methods of the same 
class (Discontinuous Galerkin, Spectral Volume 
approaches). 
During the last two years, attention was focused on 
the serial and parallel efficiency of our solver and 
we obtained important results. First of all, high 
order discontinuous spectral approaches are 
assumed to lead to a large CPU cost. Our 
experience shows that the CPU cost of our new 
solver JAGUAR is lower than the one of standard 
industrial solvers. This is possible since there are 
many operations to perform on a reduced stencil 
and GFlops are almost twice larger than with 
regular CFD codes. Moreover, these methods are 
designed to MPI computations by nature and it is 
quite easy to obtain a linear speed-up. Obtaining a 
high efficiency in full OpenMP is complicated at the 
present time since classic nodes contain two 
sockets. Moreover, the task model is sub-optimal 
when there are two memory banks: it is possible 
that a core from a socket wants to access the 
memory bank of the other socket. The better 
efficiency on a node is still attained with a pure 
MPI approach but a hybrid technique based on 
OpenMP and MPI is now competitive. In the near 

future, the number of cores on the node will 
increase and the hybrid approach will be 
mandatory in order to decrease exchanges 
managed by the MPI library. 
 
We are now focusing attention on two main topics. 
The first one concerns the adaptation of JAGUAR 
for massively computations considering a Many 
Integrated Core architecture. The second topic 
concerns the extension of the solver to handle 
academic and industrial configurations: boundary 
conditions, Input/Output, co-treatment using our 
Antares library [12], hp-adaptation. It is also 
planned to analyse the present capability of 
JAGUAR to treat academic combustion flames. 
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