

50h 3AF International Conference
on Applied Aerodynamics
29-30 March – 01 April 2015, Toulouse - France

FP25-2015-puigt

JAGUAR: A NEW CFD CODE DEDICATED TO MASSIVELY PARALLEL

HIGH-ORDER LES COMPUTATIONS ON COMPLEX GEOMETRY

50th 3AF INTERNATIONAL CONFERENCE ON APPLIED AERODYNAMICS
Toulouse, France, 29-30 March - 01 April 2015

A. Cassagne (1,2), J-F Boussuge (3), N. Villedieu (4), G. Puigt (5), I. D’Ast(6), A. Genot (7)

(1) Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, CSG team, 42 avenue
Gaspard Coriolis, 31057 Toulouse Cedex (France), Email: cassagne@cerfacs.fr

(2) Centre Informatique National de l’Enseignement Supérieur, 950 rue de Saint – Priest, 34000 Montpellier
(France), Email: cassagne@cines.fr

(3) Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, CFD team, 42 avenue
Gaspard Coriolis – 31057 Toulouse Cedex (France), Email: boussuge@cerfacs.fr

(4) Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, CFD team, 42 avenue
Gaspard Coriolis – 31057 Toulouse Cedex (France), Email: villedie@cerfacs.fr

(5) Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, CFD team, 42 avenue
Gaspard Coriolis – 31057 Toulouse Cedex (France), Email: puigt@cerfacs.fr

(6) Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, CSG team, 42 avenue
Gaspard Coriolis – 31057 Toulouse Cedex (France), Email: dast@cerfacs.fr

(7) Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, CFD team, 42 avenue
Gaspard Coriolis – 31057 Toulouse Cedex (France), Email: genot@cerfacs.fr

ABSTRACT
LES of industrial flows is associated with
geometrical complexity and requires high order
schemes to minimize dissipation and dispersion.
To tackle these two issues it is necessary to use
unstructured grids and High Performance
Computing algorithms. In this context, CERFACS
initiated two years ago the development of a new
CFD code called JAGUAR based on a
mathematical framework leading to high-level
capability for LES. In this paper, many topics for
HPC are introduced and solved in order to obtain
the best code performance.

1. INTRODUCTION

Some problems encountered by industry cannot be
addressed easily by standard approaches based
on (Unsteady) Reynolds Averaged Navier-Stokes
(URANS) modelling. These problems generally
encountered at off-design operating point require
to account accurately for turbulence effects. For
such configurations, the switch to a Large Eddy
Simulation (LES) and sisters (DES, Wall Modelled

LES) is nowadays recognized as a viable
alternative.

Industrial geometry is by nature complex and in
general, geometry cleaning is mandatory to
perform URANS simulations at a reasonable cost.
Here, the key point is to be able to deal with any
geometry of high complexity, with a reduced effort
on the CAD cleaning. It is therefore mandatory to
consider an unstructured framework in order to
build a mesh automatically for any kind of
configuration.

LES modelling has shown recently its great power
for off-design configurations due to the increase in
computational power (supercomputers) over the
last decades. In fact, it is well known that LES is
generally based on explicit time integration and
needs very refined meshes. High Performance
Computing (HPC) is therefore the bottleneck in
order to reduce both the restitution time and the
size of the mesh that a computational core has to
account for.

In our opinion, the last key point for a LES solver
concerns the choice of numerical schemes. Even if
LES can be performed with a standard second-
order scheme, the number of degrees of freedom
can become intractable. For the sake of clarity, a
spectral analysis following the von Neumann
approach shows that a second order scheme
requires 32 more mesh nodes than a six-order
scheme for a comparable dissipation / dispersion
behaviour. In our opinion, a high order scheme is
desirable to minimize the mesh size.

Finally, a good LES solver has to account for
complex geometry with an unstructured grid
paradigm and it must deal with high parallel
performance in order to reduce the restitution time
or to solve the problem by splitting the mesh.

In this paper, we present a new LES solver called
JAGUAR. JAGUAR has been designed to solve
all these issues linked with LES. In JAGUAR,
Navier-Stokes equations are solved following a
Spectral Difference (SD) approach. The SD
method is a member of spectral discontinuous
techniques and the key points are a polynomial
reconstruction of variables inside any mesh
element and a Riemann solver to take into account
explicitly discontinuity at mesh interface. Another
point of importance concerns the HPC capability:
the SD method needs a local stencil, avoiding the
reconstruction of large stencils using cell-
neighbouring algorithms. As any discontinuous
spectral approach, the SD algorithm induces many
computations on the local stencil. Moreover, the
parallel data exchange is quite limited.

In section 1, the basic aspects of the SD method
are introduced. The following sections are
dedicated the analysis of the performance of
several parallelism paradigms: single CPU, single
GPGPU, MPI parallelism, GPGPU parallelism
using MPI and hybrid OpenMP/MPI approaches.
Section 8 presents the conclusion of our efforts.

2. THE SPECTRAL DIFFERENCE (SD)

METHOD

Kopriva introduced the SD method in 1998 [1] for
structured grids and Liu et al. extended it to
unstructured grids in 2006 [2]. The principle of the
SD is to solve Euler or Navier-Stokes equations in
their strong form, avoiding any integral formalism.
This point justifies the naming of spectral
difference: spectral is linked to polynomial shape
functions and difference refers to the finite
difference approach. For the sake of clarity,
explanations regarding the SD method are
dedicated to Euler equations in 1D but the

approach is easily extended 2D or 3D flows [3] and
to viscous terms using a pure centred formulation
[4].

The principle of the SD approach is to assume that
the vector of unknowns Q varies as a polynomial
with a predefined degree inside each segment. In
the following and in order to simplify explanations,
we assume that the number of unknowns Q is p+1:
p+1 solution points are defined inside the segment,
where the solution is known. From those p+1
values, a p-th order interpolation polynomial is built
to represent quantity variations inside each mesh
segment. Now, let us introduce a pure hyperbolic
equation with F the flux function which is
considered here as a nonlinear function depending
on Q.

As for a Finite Difference approach, solutions are
computed in all i solution points:

 !!!

!"
+ (!"(!)

!"
)! = 0 (1)

Following an explicit time marching process, the
solution evolution is known once the derivative of
the flux density F(Q) is computed at each solution
point. For consistence, the flux density must be a
polynomial of degree p+1, based on p+2 values
computed at some specific locations called flux
points: its derivative is therefore a p-th order
polynomial. Two kinds of flux points are
introduced. Any intern flux point is located between
two adjacent solution points. The last two flux
points are segment ends. The approach is
therefore staggered. The flux at intern flux points is
build from nonlinear relations using the
extrapolated solution in the flux point. For the two
end points, two solutions are extrapolated and the
flux is computed using a (approximated) Riemann
solver. Finally, the flux polynomial is recovered by
interpolation from the flux at flux points and it is
differentiated in the solution points. The different
algorithm steps are summarized in Figs. 1-6.

Figure 1: Step 0: Solution points, second order
polynomial and solution on the segment.

Figure 2: Step 1: Extrapolation of the quantities at
flux points.

Figure 3: Step 2: computation of the flux from the
solution at flux points. Without treatment, two
different fluxes are found at segment end points.

Figure 4: Step 3: unique flux computation at
segment end points with a Riemann solver

Figure 5: Step 4: New flux polynomial from flux
points (at degree p + 1).

Figure 6: Step 5: differentiation of the flux
polynomial at solution points.

The solution and flux polynomials are Lagrange
polynomials and the solution points are the
following Gauss points on [0,1], as in many papers
published in the literature:

 𝑋! =

!
!
1 − cos (!!!!

!!
𝜋) (2)

K. Van Den Abeele [5] shows that the definition of
the solution point has no effect on both accuracy
and stability. The flux point position (defined by
index s+1/2 for a flux point located between
solution point s and s+1) has a strong importance
on the numerical stability. In the first papers, the
flux points were the Gauss-Lobatto points on [0,1]:

 𝑋!!!/! =

!
!
1 − cos (!

!
𝜋) , (3)

but the scheme is then unstable for an order larger
than 2 [5]. In our implementation, we consider the
Legendre roots and end points as flux points, for
which the SD method is stable [5,6].

The extension to 2D and 3D flows follows a tensor
product framework and the SD method can be
applied to any unstructured grid composed of
hexahedra.

Finally, for memory optimization, the location of
unknown is not stored in the physical domain: an
isoparametric transformation converts any cell
from the physical domain into a regular square
element (Fig. 7). Equations are then solved in the
isoparametric element and solution is transferred
back to the physical domain only when it is
mandatory.

Figure 7: Isoparametric transformation to cast a
mesh cell ABCD into the square A’B’C’D’

3. FROM THEORY TO ALGORITHM

Finally, the method can be divided into the
following steps:
1. Extrapolation of the solution at the flux points
using the p-th order polynomial built with solution
values Q at the solution points,
2. Computation of the flux in the intern flux points,
3. Treatment of the discontinuity using a Riemann
solver to compute the flux on cells faces,
4. Extrapolation of the flux at the solution points
using the p+1-th order polynomial interpolation F
built with computed flux values F at the flux points,
5. Computation of the divergence of the flux
polynomial in the solution,
6. Update of the solution Q at the next time step
using the flux divergence and a time integration
algorithm.

It is then clear that two different treatments must
be performed: one inside the mesh element and
one dedicated to the flux computation on the mesh
faces using a Riemann solver. In the following, the
transfer of extrapolated conservative fields at
boundary-element flux points into a list of face
elements is called the scatter operation. These
data are mandatory for the flux computation by the
Riemann solver in order to introduce a perfect
memory alignment. The transfer of the list of fluxes
from face to cells is called the gather operation.

4. SERIAL ALGORITHM OPTIMIZATION

The measured CPU time spent in each routine
lead to the following remarks:

1. The computation of the extrapolated
solution at flux points and the definition of
intern flux (by non linear composition on Q)
takes about 40% of the time per iteration.

2. The computation of the flux divergence
from the flux polynomial takes about 25%
of the time per iteration.

3. The alignment in memory of conservative
quantities at end-element flux points
(scatter or cell-to-face operation) and the

transfer of the Riemann flux to the cells
(gather or face-to-cell operation) takes
10% of the time per iteration.

4. The nonlinear Riemann solver takes
approximately 10% of the time per
iteration.

4.1. Optimization of extrapolation / divergence

operations

By nature, a computer is designed to perform
matrix / matrix multiplications and compilers are
optimized to perform linear algebra. Extrapolation
and derivation were written easily in term of matrix
/ matrix product and memory arrangement has
been optimized for vectorization. Moreover, we did
not consider here the Basic Linear Algebra
Subprogram (BLAS) library because the matrices
encountered have a very reduced shape for
dedicated libraries like BLAS. Finally, we defined
and implemented our own matrix / matrix product.

Moreover, the matrix / matrix product becomes
efficient if and only if the memory placement of
data is optimized. Our initial memory placement
followed a typical placement for a finite volume
solver: all conservative variables in a cell are
located continuously. Such a memory placement is
not optimal for JAGUAR since extrapolation and
derivations are performed variable per variable.
Our optimized memory placement has also been
considered for flux at flux points.

4.2. Cache blocking

JAGUAR has been designed to deal with hp-
refinements: in the near future, JAGUAR will be
able to automatically refine the mesh (h-
refinement) or to increase the polynomial degree
(p-refinement). A greedy algorithm has been
implemented in order to factorize common
treatments and reduce the total amount of
operations. It consists in making tasks by packing
contiguous cells with the same polynomial degree
p. The greedy algorithm also splits the packed
cells into subtasks. These subtasks fit perfectly
into the L3 cache of the CPU: it is the well-known
cache blocking technique.

4.3. GPGPU implementation

The previous greedy algorithm presents interesting
features for General-purpose Processing on
Graphics Processing Units (GPGPU), excluding
the sub-task creation part. Actually, the greedy
algorithm leads to a SIMD (Single Instruction
Multiple Data) paradigm inside a given task. This is
close to the actual SIMT (Single Instruction

Multiple Threads) paradigm for GPGPU and
adaptation to SIMT was obvious.

GPU efficiency mainly depends on the thread bloc
configuration regarding memory access of each
thread. Here, the goal is to create the right number
of threads in order to perform coalesced access in
the global memory. For JAGUAR, there are as
many GPU threads created as the number of
solution points is and each GPU bloc is dedicated
to several cells. JAGUAR uses a fine-grained
computing approach.

5. MPI OPTIMIZATION

The MPI library enables parallel computations for
both the CPU and GPGPU versions of JAGUAR.
For efficiency, the MPI communications are
overlapped by computations. Moreover, the
chosen persistent communications avoid
redundancy in setting up the message each time it
is sent.

6. OpenMP IMPLEMENTATION

A simple but not efficient way to introduce
OpenMP inside a CFD code consists in creating /
pooling OpenMP threads in each routine of the
time loop. Our first multi-threading implementation
using OpenMP consisted in building a parallel
zone (thread pooling zone) for any subroutine
inside the time loop. It is a way to get an OpenMP
code without many modifications of the original
and sequential CFD code. Such a solution
presents some drawbacks: there were many
unnecessary parallel zone creations and many
unnecessary implicit thread synchronisations. For
a small number of threads (< 6), the initial version
of the code showed relatively good speed-up but
for a larger number of threads, the scalability of the
code did not meet our expectations. The
alternative approach consists in calling the OMP
threads creation only one time, just before the time
loop in the code. The subroutines dedicated to MPI
communications are intrinsically sequential and
“OpenMP master zones” was used for them.
Except for these subroutines, the whole solver
(code inside the time loop) has been entirely
parallelized.

In JAGUAR, a heterogeneous OMP strategy has
been considered. It practice, some parts of the
code are perfectly regular and it is easy to use a
standard OpenMP for-loop indices distribution. In
contrary, other parts of the code work on mesh
cells and the code needs to account for different
number of degrees of Freedom (directly depending
on the polynomial approximation used for the

current cell). As a consequence, it is not possible
to perform a for-loop indices distribution and in
these cases, the OMP tasking model is applied. In
order to reduce the cost of task creation, it is
mandatory to be able to allocate more than one
cell to a single task. The number of cells
associated to one task depends on the size of the
cell representation in memory. Actually, the size of
the different types of cells has been pre-computed
in order to be capable to create cell packs smaller
than the L3 cache size. This way the code
performs cache blocking and the number of tasks
is drastically reduced (by limiting tasks
management overhead). We also merged some
subroutines in order to improve data independence
between threads inside a task. This improvement
reduces the number of synchronisations and
increases the cache blocking effect. We also
deleted some barriers between the subroutines in
the solver by using the “no wait” clause wherever
possible.

To summarize, our approach consists in calling the
OpenMP threads creation only once, just before
the time loop in the code. The subroutines
dedicated to MPI communications are intrinsically
sequential and a serial treatment (“OpenMP
master zones”) was used for them. Except for
these subroutines, the whole solver has been
entirely multi-threaded with OpenMP. In order to
reduce the cost of task creation, JAGUAR relies
on a greedy algorithm able to affect many cells to a
single task. The number of cells associated to one
task depends on the size of the cell representation
in memory: the goal is to perform cache blocking.
The multi-threading implementation in JAGUAR is
fully described in [14].

7. RESULTS AND DISCUSSION

In the following, only the efficiency of Euler
computations is introduced. We are currently
extending MPI, OpenMP and CUDA strategy to the
diffusion term of the Navier-Stokes equations and
our first (preliminary) results show that the same
kind of conclusion can be drawn for the Navier-
Stokes version of JAGUAR. Non integer numbers
are defined as double-precision floating-point
numbers.

7.1. Serial implementation

The first analysis concerns the serial efficiency of
our solver JAGUAR. To do so, we consider a
Cartesian grid composed of 128x128 mesh
elements. An isentropic vortex, solution of the
Euler equations, is convected in a periodic domain.
This simulation is inspired by the one of the

International Workshop on High Order CFD
methods [7,8]. Here, JAGUAR V1 will refer to the
initial version of the CFD code, without a dedicated
optimization, while JAGUAR V2 is the version with
all optimizations presented in Secs. 4.1 and 4.2.
Fig. 8 shows that the CPU performance has been
highly increased and the restitution time for the
same simulation has been decreased by 30% for
p=6 (7th order accurate solution).

Figure 8: Computational time (in s) as a function of
the polynomial degree for both initial and optimized
versions of JAGUAR.

Moreover, the GigaFlops per second (GFlops) of
JAGUAR as a function of the polynomial degree of
the solution are shown in Fig. 9. For both versions
of the solver, the amount of scalar (referred as
scalar) and vectorized (referred as vector)
operations are represented. The GFlops per
second of the vectorized routines are highly
increased and for any order of accuracy, JAGUAR
takes more than 1 GFlops/s. It must be noted that
the increase in GFlops/s varies between 27% and
55%.

Figure 9: Number of GFlops per second as a
function of the polynomial degree of the solution
variables.

These computations have been performed on an
Intel Xeon E5-2670 CPU that delivers a peak
power of 83.2 GFlops/s for 8 cores, and therefore
10.4 GFlops/s for 1 core. JAGUAR can take
benefit of 15% of the peak power and this results
makes JAGUAR one of the most efficient CFD
codes available in CERFACS.

7.2. GPGPU implementation on one GPU

In this section, the same kind of results as for the
serial implementation is presented for a
computation on a 2D 512x512 and a 3D 30x30x30
mesh elements on one Nvidia Tesla K20c GPU.
Here, the reference is the optimized version of
JAGUAR called JAGUAR V2. The mean speed-up
is about 30 for both meshes and for any value of p
(Fig. 10). The number of floating operations per
second is quite low compared to the peak power of
the GPU (Fig. 11): 1 170 GFlops/s. But this result
is in agreement with other results from the
literature [9]. Our experience shows also that the
GPU performance strongly depends on the
quantity of work to perform on the GPU: maximum
efficiency is possible when many operations can
be performed and therefore when the code is
compute-bound. Unfortunately JAGUAR is
memory-bound.

Figure 10: Speed-up obtained on the GPU for 2D
and 3D meshes as a function of the polynomial
degree p.

Figure 11: GFlops obtained on the GPGPU for 2D
and 3D meshes as a function of the polynomial
degree p.

7.3. MPI implementation

The MPI implantation of JAGUAR has been
analysed on Airain platform (Bull supercomputer at
CCRT). The mesh considered is composed of 512
x 512 2D elements and a strong scaling analysis is
performed using 16, 32, 64, 128, 256, 512, 1024
and 2048 cores. An almost linear speed-up has
been obtained for a polynomial degree from 3 to 6
(Fig. 12).

Figure 12: Speed-up depending on the number of
computational cores for different order of
polynomial reconstruction.

The floating-point operations per second have also
been measured on the same mesh and they are
summarized in Fig. 13. Two conclusions are
drawn. First, when the polynomial degree
increases, the work to perform on each mesh cell
increases and due to optimizations, the GFlops
follow the same tendency. Moreover, GFlops
obtained are almost twice as big as standard CFD
solvers: the Spectral Difference approach is a
good candidate to take benefit from the core
performance.

Figure 13: GFlops for several order of accuracy as
a function of the number of cores.

Moreover, the time per iteration and per degree of
freedom is represented in Fig. 14. For any order of
accuracy, an averaged mean time of 2.2
microseconds per iteration and per degree of
freedom is measured. It can be deduced that the
mean time per iteration is lower than the one for
industrial CFD solvers. Moreover, the higher
efficiency for 1024 cores seems to be a
consequence of the lower size of data per core,
leading to a better memory management (cache
effect).

Figure 14: Mean time (in microsecond per iteration
and per degree of freedom) depending on the
polynomial order and on the number of
computational cores.

Our last result concerns an analysis of parallel
performance on a less refined mesh.
Computations are performed on Neptune [11], one
of CERFACS in-house supercomputers based on
the same architecture as Airain. Here, a 128x128
regular mesh is split for parallel computations up to
1024 cores (Fig. 15). For such a mesh, the linear
scalability is lost: the time spent in communications
is large compared to the time spent in

computational loops for this mesh. But JAGUAR
keeps 80% of efficiency on 1024 cores with only
400 degrees of freedom per core. For p=4 (fifth-
order accurate solution), it corresponds to 16 cells
in 2D and 3 cells in 3D. It is much lower than for
any regular industrial CFD solver and it is also a
proof that our implementation of the SD approach
is well optimized for parallel simulations.

Figure 15: Speed up analysis depending on the
number of cores for a small mesh composed of
16,384 quadrangles.

7.4. GPGPU MPI implementation

The parallel version of our GPGPU-enabled solver
follows the same implementation optimizations as
the regular MPI version. In particular, the code
accounts for asynchronous communications and
the CPU associated with the GPU performs MPI
exchanges. The overall performance is therefore
lower than for a pure MPI approach since two data
exchanges must be performed: the first one is
mandatory to transfer information between the
GPU and the CPU while the second one is the MPI
exchange between CPUs. On 64 GPU (Fig. 16),
the overall efficiency is 47 for a 3D mesh (110 595
hexahedra) and 49.9 for a 2D mesh (640 000
hexahedra). Such a result is in full agreement with
results previously published in the literature
regarding GPU performance with the same class
of discontinuous spectral approaches. Moreover,
let’s remind that 1 GPGPU has the same power as
4 standard CPU’s or 30 cores. For the considered
meshes, it means that the configuration is more or
less the same as on 30 x 64 = 1920 cores.

Figure 16: GPU speed-up analysis for both 2D and
3D meshes.

7.5. OpenMP implementation

In the near future, supercomputers may be based
on CPU’s with many cores and a shared memory.
For exascale computing, it could be of strong
interest to take benefit of a local parallelism inside
the computational node and to decrease both size
and number of MPI messages.

The OpenMP computations are performed on the
Curie super-computer [10] and we used Curie thin
nodes. Any node is composed of two sockets and
each socket contains an Intel Sandy Bridge with 8
cores (Hyper-threading was disabled). Our new
full-OpenMP implementation leads to an efficiency
of 13/16 on the node and a hybrid approach
considering MPI between sockets and OpenMP
inside socket leads to a speed-up of 14/16 (Fig.
17).

Figure 17: performance obtained with full OpenMP
versus hybrid OpenMP MPI approaches.

On the same mesh, a full MPI approach performs
slightly better (15-fold speed-up against 14-fold
speed-up) as shown in Fig. 18. It is important to
note that the MPI parallel efficiency is not optimal
for the considered small grid.

Figure 18: full MPI versus hybrid MPI / OpenMP
parallel performance

8. CONCLUSION AND PERSPECTIVES

Large Eddy Simulation is entering now in industry.
For this purpose LES implementation needs
several prerequisite: unstructured grid capability,
high efficiency on a core, parallel efficiency and
high order of accuracy. We have presented in this
paper a new technique to address these
constraints. The class of discontinuous spectral
approaches considers a polynomial reconstruction
of data inside the element and discontinuous
solution at cell interfaces. Beyond the class of
discontinuous spectral approaches, we considered
the spectral difference approach: equations are
solved in their strong differential form, which
avoids many complex integral quadrature rules
encountered in many other methods of the same
class (Discontinuous Galerkin, Spectral Volume
approaches).
During the last two years, attention was focused on
the serial and parallel efficiency of our solver and
we obtained important results. First of all, high
order discontinuous spectral approaches are
assumed to lead to a large CPU cost. Our
experience shows that the CPU cost of our new
solver JAGUAR is lower than the one of standard
industrial solvers. This is possible since there are
many operations to perform on a reduced stencil
and GFlops are almost twice larger than with
regular CFD codes. Moreover, these methods are
designed to MPI computations by nature and it is
quite easy to obtain a linear speed-up. Obtaining a
high efficiency in full OpenMP is complicated at the
present time since classic nodes contain two
sockets. Moreover, the task model is sub-optimal
when there are two memory banks: it is possible
that a core from a socket wants to access the
memory bank of the other socket. The better
efficiency on a node is still attained with a pure
MPI approach but a hybrid technique based on
OpenMP and MPI is now competitive. In the near

future, the number of cores on the node will
increase and the hybrid approach will be
mandatory in order to decrease exchanges
managed by the MPI library.

We are now focusing attention on two main topics.
The first one concerns the adaptation of JAGUAR
for massively computations considering a Many
Integrated Core architecture. The second topic
concerns the extension of the solver to handle
academic and industrial configurations: boundary
conditions, Input/Output, co-treatment using our
Antares library [12], hp-adaptation. It is also
planned to analyse the present capability of
JAGUAR to treat academic combustion flames.

ACKNOWLEDGEMENT

The work presented in this paper was partially
supported by Safran. Moreover, some aspects on
High Performance Computing were highlighted
during a PRACE preparatory access of type C [13]
and the authors thank the CINES for its support on
the OpenMP implementation optimization.

REFERENCES

[1]. Kopriva,D.A. (1998). A staggered-grid multi-
domain spectral method for the compressible
Navier-Stokes equations, Journal of
Computational Physics, 143, 125-158.

[2]. Liu, Y., Vinokur, M., Wang, Z.J. (2006).
Spectral Difference method for unstructured
grids I: Basic formulation. Journal of
Computational Physics, 216, 780-801.

[3]. Sun, Y.; Wang, Z.J. & Liu, Y. (2007).
High-Order Multidomain Spectral difference
method for the Navier-Stokes equations on
unstructured hexahedral grids.
Communications in Computational Physics, 2,
310-333.

[4]. Sun, Y.; Wang, Z.J. and Liu, Y. (2006).
High-Order Multidomain Spectral Difference
Method for the Navier-Stokes Equations. In
44th AIAA Aerospace Sciences Meeting and
Exhibit, AIAA Paper 2006-301.

[5]. Van den Abeele K., Lacor C. and Wang Z.J.
(2008). On the stability and accuracy of the
spectral difference method. Journal of
Scientific Computing, 37,162-188.

[6]. Jameson A. (2010). A proof of the stability of
the spectral difference method for all orders of
accuracy. Journal of Scientific Computing, 45,
348-358.

[7]. Second International Workshop on High Order
CFD Methods (2013), May 27-28, Cologne.

[8]. Villedieu N., Puigt G. and Boussuge J-F.
(2013). High Order Workshop: computations
performed with JAGUAR, an in-house CFD
code based on the spectral difference
formalism, In 2nd International Workshop on
High-Order CFD Methods, May 27-28,
Cologne.

[9]. Castonguay P.; Williams, D.M.; Vincent, P.E.;
Lopez, M. and Jameson A. (2011). On the
development of a high-order, multi-GPU
enables, compressible viscous flow solver for
mixed unstructured grids. In 20th AIAA
Computational Fluid Dynamics Conference,
Honolulu, HawaII, AIAA Paper 2011-3229.

[10]. Airain super-computer web page: http://www-
ccrt.cea.fr/fr/moyen_de_calcul/airain.htm

[11]. Neptune super-computer description :
http://www.cerfacs.fr/files/cerfacs/computing/B
ULL.jpg

[12]. Curie super-computer web page: http://www-
hpc.cea.fr/fr/complexe/tgcc-curie.htm

[13]. Gomar, A.; Léonard, T. and others (2012-…).
Antares, python post-processing library. URL:
http://www.cerfacs.fr/antares/

[14]. Cassagne, A.; Puigt, G. and Boussuge, J-F.
(2015). High-order Method for a New
Generation of Large Eddy Simulation Solver
(HORSE), Partnership for Advanced
Computing in Europe (PRACE) Preparatory
Access of Type C, Final report.

